The performance of any desiccant dryer depends on the quality of its key components. Nortec uses the best available valves, controllers and desiccant. With accurately designed and sized components, the dryers are manufactured to provide you with years of trouble free operation.

All Nortec heated desiccant regeneration dryers are equipped with the choice of the art PLC controllers that regulate and maintain the functioning of the dryer. Using a simple user interface, the operator is able to take advantage of all the features that the variable controller has to offer. The actuators are engineered so that the dryers achieve the energy cycle, diagnostics, diagnostics and much more. In addition, the optional RS-232 serial port can be used to connect to a PC.

The digital dewpoint transmitter is compact, reliable and continuously monitors the dryer performance. With its available options, these transmitters can be used as indicators, alarm units or as controllers. Its single yet powerful interface, permits the user to choose between multiple units, select the display in English or metric, set alarm levels and do field calibration of the sensor.

These versatile valves are used by Nortec to provide you with precision control and complete bubble tight shut off. These valves are designed to provide years of trouble free service.

These high-performance 2-way direct acting valves are designed for reliability and durability. It uses a patented, compact piston to minimize the overall size. The stainless steel shaft and seals provide years of trouble free service.

These high performance 3-way direct acting valves are designed for reliability and durability. It uses a patented, compact piston to minimize the overall size. The stainless steel shaft and seals provide years of trouble free service.

The centrifugal blower is sized optimally to provide a continuous stream of air to the heater for regeneration. The blower is equipped with an intake filter, a muffler for quieter operation, a safety belt guard and check and relief valves for high pressure safety.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.
Nortec Heated Desiccant Dryers

Why use Regenerative Heated Dryers?

Atmospheric air that is pulled into the compressor is laden with moisture and other contaminants. During compression only the air volume is reduced resulting in a higher proportion of contaminants. In addition hydrocarbons and other chemicals are also introduced. These contaminants are very harmful and are responsible for frequent equipment breakdown, shortened life and moisture condensation in the air supply lines that lead to scaling, leaks and breakdown.

In today’s technology driven world, this is not acceptable. The need for absolutely dry air is on the increase, the available solutions are more energy efficient and most importantly they are more environmentally friendly.

Nortec offers a range of Heat Reactivated Desiccant Dryers to suit all your applications –

Blower Purge Dryer (BPD Series)

Principle of Operation

A centrifugal blower and high efficiency heater eliminates the use of valuable compressed dry air to be used for desiccant regeneration. The completely automatic drying system uses the blower to pull ambient air and pass it through the heater. This hot air causes the moisture laden atmospheric air that is pulled into the compressor to condense and escape the dryer into the purge system. The heater circuit is completely insulated ensuring maximum heating efficiency. The heater is designed and manufactured to provide a continuous source of dry air.

Optional Features

- Energy saving demand cycle controller
- NEMA 4X and explosion proof NEMA 7
- High pressure up to 10,000 PSIG
- Switching failure alarm
- Pressure control timer. Eliminates need for control power

How to find air flow capacity:

For a given capacity:

\[
\text{Air flow capacity} = \text{Nominal capacity of dryer} \times \text{Factor F1} \times \text{Factor F2}
\]

Air Inlet Pressure: 110 PSIG (7.6 BARG)
Factor F1 = 1.04

Factor F2 = 0.93

Example: 9000-BPD has a nominal capacity of 6000 SCFM. What is the minimum airflow through the dryer at the following operating conditions?

Air Inlet Pressure: 110 PSIG (7.6 BARG)
Air Temperature: 100°F (37.8°C)

\[
\text{Air flow capacity} = 6000 \times 1.04 \times 0.93 = 5600 \text{ SCFM}
\]

How to select a suitable dryer for a given capacity:

Air flow capacity + Required capacity of dryer x Factor F1 x Factor F2

Example: A 9000-BPD has a nominal capacity of 6000 SCFM. What is the minimum airflow through the dryer at the following operating conditions?

Air Inlet Pressure: 110 PSIG (7.6 BARG)
Air Temperature: 100°F (37.8°C)

\[
\text{Air flow capacity} = 6000 \times 1.04 \times 0.93 = 5600 \text{ SCFM}
\]

Correction factor for Inlet Air Temperature

\[
\text{Factor F2} = 1.00 - \frac{(100 - \text{Inlet air temperature} \text{ in °F})}{100}
\]

How to find air flow capacity:

Correction factor for Inlet Pressure

\[
\text{Factor F1} = 1.00 - \frac{110 - \text{Inlet pressure} \text{ in PSIG}}{110}
\]

For different flows and PSIG conditions:

Example: Given the operating parameters below, find a suitable dryer.

Minimum std. on airflow

Design flow rate: 950 SCFM
Air Inlet Pressure: 110 PSIG
Air Temperature: 100°F

Minimum std. on airflow

<table>
<thead>
<tr>
<th>Model</th>
<th>Flow Rate</th>
<th>Air Inlet Pressure</th>
<th>Air Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-BPD</td>
<td>500</td>
<td>150 PSIG (10.6 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>1000-BPD</td>
<td>1000</td>
<td>200 PSIG (13.8 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>1500-BPD</td>
<td>1500</td>
<td>250 PSIG (17.2 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>2000-BPD</td>
<td>2000</td>
<td>300 PSIG (20.7 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>2500-BPD</td>
<td>2500</td>
<td>350 PSIG (24.2 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>3000-BPD</td>
<td>3000</td>
<td>400 PSIG (27.7 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>3500-BPD</td>
<td>3500</td>
<td>450 PSIG (31.3 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>4000-BPD</td>
<td>4000</td>
<td>500 PSIG (34.8 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>4500-BPD</td>
<td>4500</td>
<td>550 PSIG (38.4 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>5000-BPD</td>
<td>5000</td>
<td>600 PSIG (42.0 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>5500-BPD</td>
<td>5500</td>
<td>650 PSIG (45.6 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
<tr>
<td>6000-BPD</td>
<td>6000</td>
<td>700 PSIG (49.2 BARG)</td>
<td>100°F (37.8°C)</td>
</tr>
</tbody>
</table>

Connectors

- 3" female NPT (series 1 & 2)
- 3" female NPT (series 3 & 4)
- 4" female NPT (series 5 & 6)
- 5" female NPT (series 7 & 8)
- 6" female NPT (series 9 & 10)
- 8" male flange (series 11 & 12)
- 8" male flange (series 13 & 14)

Dimensions

- 900-BPD: 140x89x120
- 1000-BPD: 140x75x110
- 1500-BPD: 110x70x109
- 2000-BPD: 90x42x90
- 2500-BPD: 90x42x90
- 3000-BPD: 90x42x90
- 3500-BPD: 90x42x90
- 4000-BPD: 90x42x90
- 4500-BPD: 90x42x90
- 5000-BPD: 90x42x90
- 5500-BPD: 90x42x90
- 6000-BPD: 90x42x90
- 6500-BPD: 90x42x90
- 7000-BPD: 90x42x90
- 7500-BPD: 90x42x90
- 8000-BPD: 90x42x90
- 9000-BPD: 90x42x90
- 9500-BPD: 90x42x90
- 10000-BPD: 90x42x90

Connections

- 3" female NPT (series 1 & 2)
- 3" female NPT (series 3 & 4)
- 4" female NPT (series 5 & 6)
- 5" female NPT (series 7 & 8)
- 6" female NPT (series 9 & 10)
- 8" male flange (series 11 & 12)
- 8" male flange (series 13 & 14)

How to find air flow capacity:

Air flow capacity = Nominal capacity of dryer x Factor F1 x Factor F2

Example: 9000-BPD has a nominal capacity of 6000 SCFM. What is the minimum airflow through the dryer at the following operating conditions?

Air Inlet Pressure: 110 PSIG (7.6 BARG)
Air Temperature: 100°F (37.8°C)

\[
\text{Air flow capacity} = 6000 \times 1.04 \times 0.93 = 5600 \text{ SCFM}
\]
Nortec Heated Desiccant Dryers

How to select a suitable dryer

In today’s technology driven world, this is not acceptable. The need for absolutely dry air in processes/applications is more for frequent equipment breakdown, shortened life and moisture condensation in the air supply lines that lead to scaling, leaks and breakdowns.

These contaminants are very harmful and are responsible for a major proportion of downtime. Therefore, the use of highest quality components and state of the art control system enables continuous and reliable operation for years to come.

Nortec offers a range of Heat Reactivated Desiccant Dryers to suit all your applications -

- **Blower Purge Dryer (BPD Series)**
- **EHD – Externally Heated Regenerative Dryers**

Why use Regenerative Heated Dryers?

- **Energy efficiency**
- **Reduce the cost of running air compressors**
- **Maximize the life of your system and equipment**
- **Provide a dry air source**

Heating efficiency

- **Minimum**
- **Seed**

Blower Purge Dryer (BPD Series)

A centrifugal blower and a high efficiency heater eliminates the use of valuable compressed dry air to be used for desiccant regeneration. The completely automatic drying systems ensure the dryer to pull ambient air and pass it through the heater. The hot air then flows across the drying element where it is cooled. This is the maximum air flow rate that dryer can accept under high design conditions.

- **EHD** – Externally Heated Regenerative Desiccant Dryers

How to find air flow capacity:

Air flow capacity = Minimum capacity of dryer + Factor F1 x Factor F2

Example: A 500-BPD has a minimum capacity of 500 CFM. What is the maximum allowable flow through the dryer at the following operating condition?

- **Air Inlet Pressure:** 110 PSIG (7.6 BARG)
- **Design flow rate:** 950 SCFM

Drying

- **Conventional**
- **Flow**

Purge exhaust muffler

- **Purge**
- **Air**

Pressure difference indicator

- **(coalescer prefilter)**
- **(afterfilter)**

Temperature sensor

- **Pressure drop**
- **Flow rate**

Optional Features

- **Energy saving demand-cycle control**
- **EHD 4x and explosion proof EHD 7**
- **High pressure up to 1000 PSIG**
- **Pneumatic control timer**

Correction factor for Inlet Air Temperature

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Capacity</th>
<th>Factor F1</th>
<th>Factor F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-BPD</td>
<td>100</td>
<td>65</td>
<td>1000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>800-BPD</td>
<td>100</td>
<td>65</td>
<td>2000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1100-BPD</td>
<td>100</td>
<td>65</td>
<td>3000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1500-BPD</td>
<td>100</td>
<td>65</td>
<td>4000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2000-BPD</td>
<td>100</td>
<td>65</td>
<td>5000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2500-BPD</td>
<td>100</td>
<td>65</td>
<td>6000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3000-BPD</td>
<td>100</td>
<td>65</td>
<td>7000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3500-BPD</td>
<td>100</td>
<td>65</td>
<td>8000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>4000-BPD</td>
<td>100</td>
<td>65</td>
<td>9000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Correction factor for Inlet Air Pressure

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Capacity</th>
<th>Factor F1</th>
<th>Factor F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-BPD</td>
<td>100</td>
<td>65</td>
<td>1000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>800-BPD</td>
<td>100</td>
<td>65</td>
<td>2000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1100-BPD</td>
<td>100</td>
<td>65</td>
<td>3000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1500-BPD</td>
<td>100</td>
<td>65</td>
<td>4000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2000-BPD</td>
<td>100</td>
<td>65</td>
<td>5000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2500-BPD</td>
<td>100</td>
<td>65</td>
<td>6000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3000-BPD</td>
<td>100</td>
<td>65</td>
<td>7000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3500-BPD</td>
<td>100</td>
<td>65</td>
<td>8000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>4000-BPD</td>
<td>100</td>
<td>65</td>
<td>9000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
</tbody>
</table>

For selecting a suitable dryer for a given capacity:

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Capacity</th>
<th>Factor F1</th>
<th>Factor F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-BPD</td>
<td>100</td>
<td>65</td>
<td>1000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>800-BPD</td>
<td>100</td>
<td>65</td>
<td>2000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1100-BPD</td>
<td>100</td>
<td>65</td>
<td>3000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1500-BPD</td>
<td>100</td>
<td>65</td>
<td>4000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2000-BPD</td>
<td>100</td>
<td>65</td>
<td>5000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2500-BPD</td>
<td>100</td>
<td>65</td>
<td>6000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3000-BPD</td>
<td>100</td>
<td>65</td>
<td>7000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3500-BPD</td>
<td>100</td>
<td>65</td>
<td>8000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>4000-BPD</td>
<td>100</td>
<td>65</td>
<td>9000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Minimum std. on flow – Design air flow / Factor F1 / Factor F2

<table>
<thead>
<tr>
<th>Model</th>
<th>Inlet</th>
<th>Outlet</th>
<th>Capacity</th>
<th>Factor F1</th>
<th>Factor F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>500-BPD</td>
<td>100</td>
<td>65</td>
<td>1000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>800-BPD</td>
<td>100</td>
<td>65</td>
<td>2000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1100-BPD</td>
<td>100</td>
<td>65</td>
<td>3000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>1500-BPD</td>
<td>100</td>
<td>65</td>
<td>4000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2000-BPD</td>
<td>100</td>
<td>65</td>
<td>5000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>2500-BPD</td>
<td>100</td>
<td>65</td>
<td>6000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3000-BPD</td>
<td>100</td>
<td>65</td>
<td>7000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>3500-BPD</td>
<td>100</td>
<td>65</td>
<td>8000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>4000-BPD</td>
<td>100</td>
<td>65</td>
<td>9000</td>
<td>1.04</td>
<td>1.04</td>
</tr>
</tbody>
</table>
Principle of Operation

A centrifugal blower and a high efficiency heater eliminates the use of valuable compressed dry air to be used for desiccant regeneration. The complete system of the dryer uses the blower to pull ambient air and pass it through the heater. The hot air stream flows opposite to the drying flow direction. Hot air above 400°F regenerates the moisture laden desiccant bed and strip is complete for all maximum. The advanced control system monitors the dew point and adjust the heating regeneration accordingly thereby providing valuable energy savings. The heater circuit is completely insulated ensuring maximum heating efficiency.

Why use Regenerative Heated Dryers?

1. Safety pressure relief valve for each tank
2. Completely insulated regenerating circuit
3. Optional level towers with pressure gauges
4. PLC controls with simple user interface
5. On/Off switch
6. Dry air cool mode
7. Completely automatic operation
8. User stop mode for emergencies
9. Visual alarm lights
10. Fluid adjustable regeneration cycles
11. Multiple temperature monitoring points with constant temperature display
12. NEMA 4 electrical enclosure

Correction factor for Inlet Air Pressure

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Factor F1</th>
<th>Correction Factor for Inlet Air Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>105 PSIG</td>
<td>1.04</td>
<td>F1 = 1.04</td>
</tr>
<tr>
<td>110 PSIG</td>
<td>1.05</td>
<td>F1 = 1.05</td>
</tr>
<tr>
<td>115 PSIG</td>
<td>1.06</td>
<td>F1 = 1.06</td>
</tr>
</tbody>
</table>

Correction factor for Inlet Air Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Factor F2</th>
<th>Correction Factor for Inlet Air Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>100°F</td>
<td>0.93</td>
<td>F2 = 0.93</td>
</tr>
<tr>
<td>110°F</td>
<td>0.94</td>
<td>F2 = 0.94</td>
</tr>
<tr>
<td>120°F</td>
<td>0.96</td>
<td>F2 = 0.96</td>
</tr>
</tbody>
</table>

Example:

Given the operating parameters below, find a suitable dryer for a given capacity:

- Air Inlet Temperature: 105°F
- Air Inlet Pressure: 110 PSIG
- Air flow capacity = 500 BPD

Solution:

1. Find the maximum air flow rate that dryer can accept under those operating conditions.
 - This is the maximum air flow rate that dryer can accept under those operating conditions.

2. Calculate the design air flow:
 - Design air flow = 500 BPD

3. Find the minimum std. air flow:
 - Minimum std. air flow = Design air flow / Factor F1 / Factor F2
 - Minimum std. air flow = 500 BPD / 1.04 / 0.93 = 536.77 BPD

4. Choose a suitable dryer:
 - The minimum std. air flow is 536.77 BPD, which is less than 500 BPD. Therefore, a dryer with a capacity of 500 BPD would be suitable.
Nortec Heated Desiccant Dryers

The performance of any desiccant dryer depends on the quality of its key components. Nortec uses the best available valves, controllers and desiccant. With accurately designed and sized components, the dryers are manufactured to provide you with years of trouble free operation.

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

The digital dewpoint transmitters are compact, reliable and continuously monitor the dryer performance. With its available options, these monitors can be used as indicators, alarm units or as controllers. Its simple yet powerful interface, permits the user to choose between multiple units, monitor the data, control the valves and do field calibration of the units.

All Nortec heated desiccant regenerative dryers are equipped with the state of the art PLC controllers that regulate and monitor the functioning of the dryer. Using a simple user interface, the operator is able to take advantage of all the features that the variable participation has to offer. The controllers in these dryers, charting the energy cycle, diagnostic operations and much more. In addition, the optional RS-232 serial port can be used to connect to a PC.

High Efficiency Blower

These versatile valves are used by Nortec to provide you with precision control and complete bubble-tight shut off. The digitally controlled actuators provide easy PLC interface and feature fast response times. The tongue-and-groove seat design feature ensures complete isolation of flowing media from the body and stem. Rugged and reliable, these valves are designed to provide years of trouble free service.

Butterfly Valve

The centrifugal blowers are sized optimally to provide a continuous stream of air to the heater for regeneration. The blower is equipped with an intake filter, a muffler for quieter operation, a safety belt guard and check and relief valves for high pressure safety.

High Efficiency Blower

Nortec Advantages:

- NORTEC
- Compressed Air, Gas & Fluid Technologies
- High Capacity Dryers
- Heated & Heated
- Desiccant Dryers
- Fluid Chillers
- Refrigerated Dryers
- Heatless & Heated
- Desiccant Dryers
- Water Saver and Pumping Stations
- Compressed Air, Gas & Fluid Technologies
- Nortec Corporation

Specifications subject to change without notice 11/09

1723 Henry G. Lane, Maryville TN 37801
Tel: 865-980-6100 Fax: 865-980-6190
www.nbdry.com
Nortec Heated Desiccant Dryers

Nortec Advantages:

The performance of any desiccant dryer depends on the quality of its key components. Nortec uses the best available valves, controllers and desiccant. With accurately designed and sized components, the dryers are manufactured to provide you with years of trouble free operation.

Desiccant:

Nortec uses a mixture of adsorption media in its heatless range of desiccant dryers to achieve consistent dewpoint. Activated Alumina, Molecular Sieve and Silica Gel are used in varying ratios depending on the application. The long lasting, high crush strength media has a very high surface/volume ratio.

Dewpoint Meter:

The digital dewpoint transmitters are compact, reliable and continuously monitor the dryer performance. With its versatile options, these monitors can be used as indicators, alarm units or as controllers. Its simple yet powerful interface, permits the user to choose between multiple units, select the display format and perform basic calibration of the device.

Electronic Controller:

All Nortec heated desiccant regenerative dryers are equipped with the state of the art PLC controllers that regulate and monitor the functioning of the dryer. Using a simple user interface, the operator is able to take advantage of all the features that the versatile controller has to offer. Using its simple yet powerful interface, the operator is able to take advantage of all the features that the versatile controller has to offer.

Angle Body Piston Valve:

These versatile valves are used by Nortec to provide you with precision control and complete bubble-tight shut-off. The digitally controlled actuators provide easy PLC interface and feature fast response times. The tongue-and-groove seat design blocks even complete isolation of flowing media from the body and stem. Rugged and reliable, these valves are designed to provide years of trouble free service.

Butterfly Valve:

The centrifugal blowers are sized optimally to provide a continuous stream of air to the heater for regeneration. The blowers are equipped with an intake filter, a muffler for quieter operation, a safety belt guard and check and relief valves for high pressure safety.

High Efficiency Blower:

These high-performance 2-way direct-acting valves are designed for reliability and durability. It uses a profiled disc in conjunction with a high resolution compact positioner and linear feedback potentiometer to provide precise proportional flow. The stainless steel internals and a tough fiber composite body make this valve far superior to any existing design. Polypropylene seating and Viton seals make it perfect for the chemical processing industry. Stainless steel piston rods ensure original performance for an extended time period.